Exercise 38

Water temperature affects the growth rate of brook trout. The table shows the amount of weight gained by brook trout after 24 days in various water temperatures.

Temperature (°C)	15.5	17.7	20.0	22.4	24.4
Weight gained (g)	37.2	31.0	19.8	9.7	-9.8

If W(x) is the weight gain at temperature x, construct a table of estimated values for W' and sketch its graph. What are the units for W'(x)?

Source: Adapted from J. Chadwick Jr., "Temperature Effects on Growth and Stress Physiology of Brook Trout: Implications for Climate Change Impacts on an Iconic Cold-Water Fish." Masters Theses. Paper 897. 2012. scholarworks.umass.edu/theses/897..

Solution

W'(x) is the rate at which the weight is increasing with respect to temperature (units of °C/g). To obtain the values of W'(x), calculate the slope of the secant line going through two adjacent x values. At x = 15.5, for example,

$$W'(x) = \frac{W(17.7) - W(15.5)}{17.7 - 15.5} = \frac{31.0 - 37.2}{2.2} = -2.82$$

At x = 17.7, there are two secant lines.

$$W'(x) = \frac{W(17.7) - W(15.5)}{17.7 - 15.5} = \frac{31.0 - 37.2}{2} = -2.82$$
$$W'(x) = \frac{W(20.0) - W(17.7)}{20.0 - 17.7} = \frac{19.8 - 31.0}{2.3} = -4.87$$

At such times where there are two possible secant lines, take the average for the best estimate.

$$\frac{(-2.82) + (-4.87)}{2} \approx -3.84$$

Below is a table of estimated values for W'(x).

x	W(x)	W'(x)
15.5	37.2	-2.82
17.7	31.0	-3.84
20.0	19.8	-4.54
22.4	9.7	-6.98
24.4	-9.8	-9.75

Below is a graph of W' versus x.

It shows that with increasing temperatures, the brook trout grow less and less properly.